tea_tasting.config
#
Global configuration.
config_context(*, alpha=None, alternative=None, confidence_level=None, equal_var=None, n_obs=None, n_resamples=None, power=None, ratio=None, use_t=None, **kwargs)
#
A context manager that temporarily modifies the global configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
float | None
|
Significance level. Default is 0.05. |
None
|
alternative |
Literal['two-sided', 'greater', 'less'] | None
|
Alternative hypothesis:
Default is |
None
|
confidence_level |
float | None
|
Confidence level for the confidence interval.
Default is |
None
|
equal_var |
bool | None
|
Defines whether equal variance is assumed. If |
None
|
n_obs |
int | Sequence[int] | None
|
Number of observations in the control and in the treatment together.
Default is |
None
|
n_resamples |
int | None
|
The number of resamples performed to form the bootstrap
distribution of a statistic. Default is |
None
|
power |
float | None
|
Statistical power. Default is 0.8. |
None
|
ratio |
float | int | None
|
Ratio of the number of observations in the treatment relative to the control. Default is 1. |
None
|
use_t |
bool | None
|
Defines whether to use the Student's t-distribution ( |
None
|
**kwargs |
Any
|
User-defined global parameters. |
{}
|
Examples:
>>> import tea_tasting as tt
>>> with tt.config_context(equal_var=True, use_t=False):
... experiment = tt.Experiment(
... sessions_per_user=tt.Mean("sessions"),
... orders_per_session=tt.RatioOfMeans("orders", "sessions"),
... orders_per_user=tt.Mean("orders"),
... revenue_per_user=tt.Mean("revenue"),
... )
>>> print(experiment.metrics["orders_per_user"])
Mean(value='orders', covariate=None, alternative='two-sided', confidence_level=0.95, equal_var=True, use_t=False, alpha=0.05, ratio=1, power=0.8, effect_size=None, rel_effect_size=None, n_obs=None)
Source code in src/tea_tasting/config.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
get_config(option=None)
#
Retrieve the current settings of the global configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
option |
str | None
|
The option name. |
None
|
Returns:
Type | Description |
---|---|
Any
|
The specified option value if its name is provided, or a dictionary containing all options otherwise. |
Examples:
>>> import tea_tasting as tt
>>> print(tt.get_config("equal_var"))
False
Source code in src/tea_tasting/config.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
set_config(*, alpha=None, alternative=None, confidence_level=None, equal_var=None, n_obs=None, n_resamples=None, power=None, ratio=None, use_t=None, **kwargs)
#
Update the global configuration with specified settings.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
alpha |
float | None
|
Significance level. Default is 0.05. |
None
|
alternative |
Literal['two-sided', 'greater', 'less'] | None
|
Alternative hypothesis:
Default is |
None
|
confidence_level |
float | None
|
Confidence level for the confidence interval.
Default is |
None
|
equal_var |
bool | None
|
Defines whether equal variance is assumed. If |
None
|
n_obs |
int | Sequence[int] | None
|
Number of observations in the control and in the treatment together.
Default is |
None
|
n_resamples |
int | None
|
The number of resamples performed to form the bootstrap
distribution of a statistic. Default is |
None
|
power |
float | None
|
Statistical power. Default is 0.8. |
None
|
ratio |
float | int | None
|
Ratio of the number of observations in the treatment relative to the control. Default is 1. |
None
|
use_t |
bool | None
|
Defines whether to use the Student's t-distribution ( |
None
|
**kwargs |
Any
|
User-defined global parameters. |
{}
|
Examples:
>>> import tea_tasting as tt
>>> tt.set_config(equal_var=True, use_t=False)
>>> experiment = tt.Experiment(
... sessions_per_user=tt.Mean("sessions"),
... orders_per_session=tt.RatioOfMeans("orders", "sessions"),
... orders_per_user=tt.Mean("orders"),
... revenue_per_user=tt.Mean("revenue"),
... )
>>> tt.set_config(equal_var=False, use_t=True)
>>> print(experiment.metrics["orders_per_user"])
Mean(value='orders', covariate=None, alternative='two-sided', confidence_level=0.95, equal_var=True, use_t=False, alpha=0.05, ratio=1, power=0.8, effect_size=None, rel_effect_size=None, n_obs=None)
Source code in src/tea_tasting/config.py
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
|