Skip to content

tea_tasting.experiment #

Experiment and experiment result.

Experiment(metrics=None, variant='variant', **kw_metrics) #

Bases: ReprMixin

Experiment definition: metrics and variant column.

Parameters:

Name Type Description Default
metrics dict[str, MetricBase[Any]] | None

Dictionary of metrics with metric names as keys.

None
variant str

Variant column name.

'variant'
kw_metrics MetricBase[Any]

Metrics with metric names as parameter names.

{}

Examples:

>>> import tea_tasting as tt

>>> experiment = tt.Experiment(
...     sessions_per_user=tt.Mean("sessions"),
...     orders_per_session=tt.RatioOfMeans("orders", "sessions"),
...     orders_per_user=tt.Mean("orders"),
...     revenue_per_user=tt.Mean("revenue"),
... )
>>> data = tt.make_users_data(seed=42)
>>> result = experiment.analyze(data)
>>> result
            metric control treatment rel_effect_size rel_effect_size_ci pvalue
 sessions_per_user    2.00      1.98          -0.66%      [-3.7%, 2.5%]  0.674
orders_per_session   0.266     0.289            8.8%      [-0.89%, 19%] 0.0762
   orders_per_user   0.530     0.573            8.0%       [-2.0%, 19%]  0.118
  revenue_per_user    5.24      5.73            9.3%       [-2.4%, 22%]  0.123

Using the first argument metrics which accepts metrics in a form of dictionary:

>>> experiment = tt.Experiment({
...     "sessions per user": tt.Mean("sessions"),
...     "orders per session": tt.RatioOfMeans("orders", "sessions"),
...     "orders per user": tt.Mean("orders"),
...     "revenue per user": tt.Mean("revenue"),
... })
>>> data = tt.make_users_data(seed=42)
>>> result = experiment.analyze(data)
>>> result
            metric control treatment rel_effect_size rel_effect_size_ci pvalue
 sessions per user    2.00      1.98          -0.66%      [-3.7%, 2.5%]  0.674
orders per session   0.266     0.289            8.8%      [-0.89%, 19%] 0.0762
   orders per user   0.530     0.573            8.0%       [-2.0%, 19%]  0.118
  revenue per user    5.24      5.73            9.3%       [-2.4%, 22%]  0.123

Power analysis:

>>> data = tt.make_users_data(
...     seed=42,
...     sessions_uplift=0,
...     orders_uplift=0,
...     revenue_uplift=0,
...     covariates=True,
... )
>>> with tt.config_context(n_obs=(10_000, 20_000)):
...     experiment = tt.Experiment(
...         sessions_per_user=tt.Mean("sessions", "sessions_covariate"),
...         orders_per_session=tt.RatioOfMeans(
...             numer="orders",
...             denom="sessions",
...             numer_covariate="orders_covariate",
...             denom_covariate="sessions_covariate",
...         ),
...         orders_per_user=tt.Mean("orders", "orders_covariate"),
...         revenue_per_user=tt.Mean("revenue", "revenue_covariate"),
...     )
>>> power_result = experiment.solve_power(data)
>>> power_result
            metric power effect_size rel_effect_size n_obs
 sessions_per_user   80%      0.0458            2.3% 10000
 sessions_per_user   80%      0.0324            1.6% 20000
orders_per_session   80%      0.0177            6.8% 10000
orders_per_session   80%      0.0125            4.8% 20000
   orders_per_user   80%      0.0374            7.2% 10000
   orders_per_user   80%      0.0264            5.1% 20000
  revenue_per_user   80%       0.488            9.2% 10000
  revenue_per_user   80%       0.345            6.5% 20000
Source code in src/tea_tasting/experiment.py
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
def __init__(
    self,
    metrics: dict[str, tea_tasting.metrics.MetricBase[Any]] | None = None,
    variant: str = "variant",
    **kw_metrics: tea_tasting.metrics.MetricBase[Any],
) -> None:
    """Experiment definition: metrics and variant column.

    Args:
        metrics: Dictionary of metrics with metric names as keys.
        variant: Variant column name.
        kw_metrics: Metrics with metric names as parameter names.

    Examples:
        ```pycon
        >>> import tea_tasting as tt

        >>> experiment = tt.Experiment(
        ...     sessions_per_user=tt.Mean("sessions"),
        ...     orders_per_session=tt.RatioOfMeans("orders", "sessions"),
        ...     orders_per_user=tt.Mean("orders"),
        ...     revenue_per_user=tt.Mean("revenue"),
        ... )
        >>> data = tt.make_users_data(seed=42)
        >>> result = experiment.analyze(data)
        >>> result
                    metric control treatment rel_effect_size rel_effect_size_ci pvalue
         sessions_per_user    2.00      1.98          -0.66%      [-3.7%, 2.5%]  0.674
        orders_per_session   0.266     0.289            8.8%      [-0.89%, 19%] 0.0762
           orders_per_user   0.530     0.573            8.0%       [-2.0%, 19%]  0.118
          revenue_per_user    5.24      5.73            9.3%       [-2.4%, 22%]  0.123

        ```

        Using the first argument `metrics` which accepts metrics in a form of dictionary:

        ```pycon
        >>> experiment = tt.Experiment({
        ...     "sessions per user": tt.Mean("sessions"),
        ...     "orders per session": tt.RatioOfMeans("orders", "sessions"),
        ...     "orders per user": tt.Mean("orders"),
        ...     "revenue per user": tt.Mean("revenue"),
        ... })
        >>> data = tt.make_users_data(seed=42)
        >>> result = experiment.analyze(data)
        >>> result
                    metric control treatment rel_effect_size rel_effect_size_ci pvalue
         sessions per user    2.00      1.98          -0.66%      [-3.7%, 2.5%]  0.674
        orders per session   0.266     0.289            8.8%      [-0.89%, 19%] 0.0762
           orders per user   0.530     0.573            8.0%       [-2.0%, 19%]  0.118
          revenue per user    5.24      5.73            9.3%       [-2.4%, 22%]  0.123

        ```

        Power analysis:

        ```pycon
        >>> data = tt.make_users_data(
        ...     seed=42,
        ...     sessions_uplift=0,
        ...     orders_uplift=0,
        ...     revenue_uplift=0,
        ...     covariates=True,
        ... )
        >>> with tt.config_context(n_obs=(10_000, 20_000)):
        ...     experiment = tt.Experiment(
        ...         sessions_per_user=tt.Mean("sessions", "sessions_covariate"),
        ...         orders_per_session=tt.RatioOfMeans(
        ...             numer="orders",
        ...             denom="sessions",
        ...             numer_covariate="orders_covariate",
        ...             denom_covariate="sessions_covariate",
        ...         ),
        ...         orders_per_user=tt.Mean("orders", "orders_covariate"),
        ...         revenue_per_user=tt.Mean("revenue", "revenue_covariate"),
        ...     )
        >>> power_result = experiment.solve_power(data)
        >>> power_result
                    metric power effect_size rel_effect_size n_obs
         sessions_per_user   80%      0.0458            2.3% 10000
         sessions_per_user   80%      0.0324            1.6% 20000
        orders_per_session   80%      0.0177            6.8% 10000
        orders_per_session   80%      0.0125            4.8% 20000
           orders_per_user   80%      0.0374            7.2% 10000
           orders_per_user   80%      0.0264            5.1% 20000
          revenue_per_user   80%       0.488            9.2% 10000
          revenue_per_user   80%       0.345            6.5% 20000

        ```
    """  # noqa: E501
    if metrics is None:
        metrics = {}
    metrics = metrics | kw_metrics

    tea_tasting.utils.check_scalar(metrics, "metrics", typ=dict)
    tea_tasting.utils.check_scalar(len(metrics), "len(metrics)", gt=0)
    for name, metric in metrics.items():
        tea_tasting.utils.check_scalar(name, "metric_name", typ=str)
        tea_tasting.utils.check_scalar(
            metric, name, typ=tea_tasting.metrics.MetricBase)

    self.metrics = metrics
    self.variant = tea_tasting.utils.check_scalar(
        variant, "variant", typ=str)

analyze(data, control=None, *, all_variants=False) #

Analyze the experiment.

Parameters:

Name Type Description Default
data IntoFrame | Table

Experimental data.

required
control object

Control variant. If None, the variant with the minimal ID is used as a control.

None
all_variants bool

If True, analyze all pairs of variants. Otherwise, analyze only one pair of variants.

False

Returns:

Type Description
ExperimentResult | ExperimentResults

Experiment result.

Source code in src/tea_tasting/experiment.py
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
def analyze(
    self,
    data: narwhals.typing.IntoFrame | ibis.expr.types.Table,
    control: object = None,
    *,
    all_variants: bool = False,
) -> ExperimentResult | ExperimentResults:
    """Analyze the experiment.

    Args:
        data: Experimental data.
        control: Control variant. If `None`, the variant with the minimal ID
            is used as a control.
        all_variants: If `True`, analyze all pairs of variants. Otherwise,
            analyze only one pair of variants.

    Returns:
        Experiment result.
    """
    tea_tasting.utils.check_scalar(all_variants, "all_variants", typ=bool)
    aggregated_data, granular_data = self._read_data(data)

    if aggregated_data is not None:
        variants = aggregated_data.keys()
    elif granular_data is not None:
        variants = granular_data.keys()
    else:
        variants = self._read_variants(data)
    variants = sorted(variants)  # type: ignore

    if control is not None:
        variant_pairs = tuple(
            (control, treatment)
            for treatment in variants
            if treatment != control
        )
    else:
        variant_pairs = tuple(
            (control, treatment)
            for control in variants
            for treatment in variants
            if control < treatment
        )

    if len(variant_pairs) != 1 and not all_variants:
        raise ValueError(
            "all_variants is False, but there are more than one pair of variants.")

    results = ExperimentResults()
    for contr, treat in variant_pairs:
        result = ExperimentResult()
        for name, metric in self.metrics.items():
            result |= {name: self._analyze_metric(
                metric=metric,
                data=data,
                aggregated_data=aggregated_data,
                granular_data=granular_data,
                control=contr,
                treatment=treat,
            )}

        if not all_variants:
            return result

        results |= {(contr, treat): result}

    return results

simulate(data, n_simulations=10000, *, seed=None, ratio=1, treat=None, map_=map, progress=None) #

Simulate the experiment analysis multiple times.

Parameters:

Name Type Description Default
data IntoFrame | Table | DataGenerator

Experimental data or a callable that generates the data.

required
n_simulations int

Number of simulations.

10000
seed int | Generator | SeedSequence | None

Random seed.

None
ratio float | int

Ratio of the number of users in treatment relative to control.

1
treat Callable[[Table], Table] | None

Treatment function that takes a PyArrow Table as an input and returns an updated PyArrow Table.

None
map_ MapLike[Any]

Map-like function to run simulations.

map
progress ProgressFn[Any] | type[Iterable[Any]] | None

tqdm-like class or function to show the progress of simulations.

None

Returns:

Type Description
SimulationResults

Simulation results.

Source code in src/tea_tasting/experiment.py
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
def simulate(
    self,
    data: narwhals.typing.IntoFrame | ibis.expr.types.Table | DataGenerator,  # type: ignore
    n_simulations: int = 10_000,
    *,
    seed: int | np.random.Generator | np.random.SeedSequence | None = None,
    ratio: float | int = 1,
    treat: Callable[[pa.Table], pa.Table] | None = None,
    map_: MapLike[Any] = map,
    progress: ProgressFn[Any] | type[Iterable[Any]] | None = None,
) -> SimulationResults:
    """Simulate the experiment analysis multiple times.

    Args:
        data: Experimental data or a callable that generates the data.
        n_simulations: Number of simulations.
        seed: Random seed.
        ratio: Ratio of the number of users in treatment relative to control.
        treat: Treatment function that takes a PyArrow Table as an input
            and returns an updated PyArrow Table.
        map_: Map-like function to run simulations.
        progress: tqdm-like class or function to show the progress of simulations.

    Returns:
        Simulation results.
    """
    tea_tasting.utils.check_scalar(n_simulations, "n_simulations", typ=int, gt=0)
    tea_tasting.utils.auto_check(ratio, "ratio")

    if not callable(data):
        gran_cols: set[str] = set()
        for metric in self.metrics.values():
            if isinstance(metric, tea_tasting.metrics.MetricBaseAggregated):
                aggr_cols = metric.aggr_cols
                gran_cols |= (
                    set(aggr_cols.mean_cols) |
                    set(aggr_cols.var_cols) |
                    set(itertools.chain.from_iterable(aggr_cols.cov_cols))
                )
            elif isinstance(metric, tea_tasting.metrics.MetricBaseGranular):
                gran_cols |= set(metric.cols)
            else:
                gran_cols = set()
                break
        cols = tuple(gran_cols)
        data: pa.Table = tea_tasting.metrics.read_granular(data, cols)
        if self.variant in data.column_names:
            data = data.drop_columns(self.variant)

    sim = functools.partial(
        _simulate_once,
        experiment=self,
        data=data,
        ratio=ratio,
        treat=treat,
    )

    results = map_(sim, np.random.default_rng(seed).spawn(n_simulations))
    if progress is not None:
        try:
            results = progress(results, total=n_simulations)  # type: ignore
        except TypeError:
            results = progress(results)  # type: ignore
    return SimulationResults(results)

solve_power(data, parameter='rel_effect_size') #

Solve for a parameter of the power of a test.

Parameters:

Name Type Description Default
data IntoFrame | Table

Sample data.

required
parameter Literal['power', 'effect_size', 'rel_effect_size', 'n_obs']

Parameter name.

'rel_effect_size'

Returns:

Type Description
ExperimentPowerResult

Power analysis result.

Source code in src/tea_tasting/experiment.py
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
def solve_power(
    self,
    data: narwhals.typing.IntoFrame | ibis.expr.types.Table,
    parameter: Literal[
        "power", "effect_size", "rel_effect_size", "n_obs"] = "rel_effect_size",
) -> ExperimentPowerResult:
    """Solve for a parameter of the power of a test.

    Args:
        data: Sample data.
        parameter: Parameter name.

    Returns:
        Power analysis result.
    """
    tea_tasting.utils.check_scalar(
        parameter,
        "parameter",
        in_={"power", "effect_size", "rel_effect_size", "n_obs"},
    )
    aggr_cols = tea_tasting.metrics.AggrCols()
    for metric in self.metrics.values():
        if isinstance(metric, tea_tasting.metrics.PowerBaseAggregated):
            aggr_cols |= metric.aggr_cols

    aggr_data = tea_tasting.aggr.read_aggregates(
        data,
        group_col=None,
        **aggr_cols._asdict(),
    ) if len(aggr_cols) > 0 else tea_tasting.aggr.Aggregates()

    result = ExperimentPowerResult()
    for name, metric in self.metrics.items():
        if isinstance(metric, tea_tasting.metrics.PowerBaseAggregated):
            result |= {name: metric.solve_power(aggr_data, parameter=parameter)}
        elif isinstance(metric, tea_tasting.metrics.PowerBase):
            result |= {name: metric.solve_power(data, parameter=parameter)}

    return result

ExperimentPowerResult #

Bases: DictsReprMixin, UserDict[str, MetricPowerResults[Any]]

Result of the analysis of power in a experiment.

to_arrow() #

Convert the object to a PyArrow Table.

Source code in src/tea_tasting/utils.py
303
304
305
306
@_cache_method
def to_arrow(self) -> pa.Table:
    """Convert the object to a PyArrow Table."""
    return pa.Table.from_pylist(self.to_dicts())

to_dicts() #

Convert the result to a sequence of dictionaries.

Source code in src/tea_tasting/experiment.py
152
153
154
155
156
157
158
@tea_tasting.utils._cache_method
def to_dicts(self) -> tuple[dict[str, object], ...]:
    """Convert the result to a sequence of dictionaries."""
    dicts = ()
    for metric, results in self.items():
        dicts = (*dicts, *({"metric": metric} | d for d in results.to_dicts()))
    return dicts

to_html(keys=None, formatter=get_and_format_num, *, max_rows=None, indent=None) #

Convert the object to HTML.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None
indent str | None

Whitespace to insert for each indentation level. If None, do not indent.

None

Returns:

Type Description
str

A table with results rendered as HTML.

Source code in src/tea_tasting/utils.py
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def to_html(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
    indent: str | None = None,
) -> str:
    """Convert the object to HTML.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.
        indent: Whitespace to insert for each indentation level. If `None`,
            do not indent.

    Returns:
        A table with results rendered as HTML.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    table = ET.Element(
        "table",
        {"class": "dataframe", "style": "text-align: right;"},
    )
    thead = ET.SubElement(table, "thead")
    thead_tr = ET.SubElement(thead, "tr")
    for key in keys:
        th = ET.SubElement(thead_tr, "th")
        th.text = key
    tbody = ET.SubElement(table, "tbody")
    for pretty_dict in self.to_pretty_dicts(keys, formatter, max_rows=max_rows):
        tr = ET.SubElement(tbody, "tr")
        for key in keys:
            td = ET.SubElement(tr, "td")
            td.text = pretty_dict[key]
    if indent is not None:
        ET.indent(table, space=indent)
    return ET.tostring(table, encoding="unicode", method="html")

to_pandas() #

Convert the object to a Pandas DataFrame.

Source code in src/tea_tasting/utils.py
308
309
310
311
312
@_cache_method
def to_pandas(self) -> pd.DataFrame:
    """Convert the object to a Pandas DataFrame."""
    import pandas as pd
    return pd.DataFrame.from_records(self.to_dicts())

to_polars() #

Convert the object to a Polars DataFrame.

Source code in src/tea_tasting/utils.py
314
315
316
317
318
@_cache_method
def to_polars(self) -> pl.DataFrame:
    """Convert the object to a Polars DataFrame."""
    import polars as pl
    return pl.from_dicts(self.to_dicts())

to_pretty_dicts(keys=None, formatter=get_and_format_num, *, max_rows=None) #

Convert the object to a list of dictionaries with formatted values.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None

Returns:

Type Description
list[dict[str, str]]

List of dictionaries with formatted values.

Source code in src/tea_tasting/utils.py
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def to_pretty_dicts(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
) -> list[dict[str, str]]:
    """Convert the object to a list of dictionaries with formatted values.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.

    Returns:
        List of dictionaries with formatted values.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    dicts = self.to_dicts()
    if max_rows <= 0 or len(dicts) <= max_rows:
        return [{key: formatter(data, key) for key in keys} for data in dicts]

    bottom = max_rows // 2
    top = max_rows - bottom
    return (
        [{key: formatter(data, key) for key in keys} for data in dicts[:top]] +
        [dict.fromkeys(keys, "…")] +
        [{key: formatter(data, key) for key in keys} for data in dicts[-bottom:]]
    )

to_string(keys=None, formatter=get_and_format_num, *, max_rows=None) #

Convert the object to a string.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None

Returns:

Type Description
str

A table with results rendered as string.

Source code in src/tea_tasting/utils.py
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
def to_string(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
) -> str:
    """Convert the object to a string.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.

    Returns:
        A table with results rendered as string.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    pretty_dicts = self.to_pretty_dicts(keys, formatter, max_rows=max_rows)
    widths = {key: len(key) for key in keys}
    for pretty_dict in pretty_dicts:
        for key in keys:
            widths[key] = max(widths[key], len(pretty_dict[key]))

    sep = " "
    rows = [sep.join(key.rjust(widths[key]) for key in keys)]
    rows.extend(
        sep.join(pretty_dict[key].rjust(widths[key]) for key in keys)
        for pretty_dict in pretty_dicts
    )
    return "\n".join(rows)

with_defaults(*, keys=None, max_rows=None) #

Copies the object and sets the new default parameters.

Parameters:

Name Type Description Default
keys Sequence[str] | None

New default keys for the methods to_pretty_dicts, to_string, and to_html.

None
max_rows int | None

New default max_rows for the methods to_pretty_dicts, to_string, and to_html.

None

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default keys.

Source code in src/tea_tasting/utils.py
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def with_defaults(
    self: DictsReprMixinT,
    *,
    keys: Sequence[str] | None = None,
    max_rows: int | None = None,
) -> DictsReprMixinT:
    """Copies the object and sets the new default parameters.

    Args:
        keys: New default `keys` for the methods `to_pretty_dicts`, `to_string`,
            and `to_html`.
        max_rows: New default `max_rows` for the methods `to_pretty_dicts`,
            `to_string`, and `to_html`.

    Returns:
        A copy of the object with the new default keys.
    """
    new_instance = self.__class__.__new__(self.__class__)
    new_instance.__dict__.update(self.__dict__)
    new_instance._cache = None
    if keys is not None:
        new_instance.default_keys = keys
    if max_rows is not None:
        new_instance.default_max_rows = max_rows
    return new_instance

with_keys(keys) #

Copies the object and sets the new default keys.

Parameters:

Name Type Description Default
keys Sequence[str]

New default keys for the methods to_pretty_dicts, to_string, and to_html.

required

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default keys.

Source code in src/tea_tasting/utils.py
516
517
518
519
520
521
522
523
524
525
526
def with_keys(self: DictsReprMixinT, keys: Sequence[str]) -> DictsReprMixinT:
    """Copies the object and sets the new default `keys`.

    Args:
        keys: New default `keys` for the methods `to_pretty_dicts`, `to_string`,
            and `to_html`.

    Returns:
        A copy of the object with the new default `keys`.
    """
    return self.with_defaults(keys=keys)

with_max_rows(max_rows) #

Copies the object and sets the new default max_rows.

Parameters:

Name Type Description Default
max_rows int

New default max_rows for the methods to_pretty_dicts, to_string, and to_html.

required

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default max_rows.

Source code in src/tea_tasting/utils.py
529
530
531
532
533
534
535
536
537
538
539
def with_max_rows(self: DictsReprMixinT, max_rows: int) -> DictsReprMixinT:
    """Copies the object and sets the new default `max_rows`.

    Args:
        max_rows: New default `max_rows` for the methods `to_pretty_dicts`,
            `to_string`, and `to_html`.

    Returns:
        A copy of the object with the new default `max_rows`.
    """
    return self.with_defaults(max_rows=max_rows)

ExperimentResult #

Bases: DictsReprMixin, UserDict[str, MetricResult]

Experiment result for a pair of variants.

to_arrow() #

Convert the object to a PyArrow Table.

Source code in src/tea_tasting/utils.py
303
304
305
306
@_cache_method
def to_arrow(self) -> pa.Table:
    """Convert the object to a PyArrow Table."""
    return pa.Table.from_pylist(self.to_dicts())

to_dicts() #

Convert the result to a sequence of dictionaries.

Examples:

>>> import pprint
>>> import tea_tasting as tt

>>> experiment = tt.Experiment(
...     orders_per_user=tt.Mean("orders"),
...     revenue_per_user=tt.Mean("revenue"),
... )
>>> data = tt.make_users_data(seed=42)
>>> result = experiment.analyze(data)
>>> pprint.pprint(result.to_dicts())
({'control': 0.5304003954522986,
  'effect_size': 0.04269014577177832,
  'effect_size_ci_lower': -0.010800201598205515,
  'effect_size_ci_upper': 0.09618049314176216,
  'metric': 'orders_per_user',
  'pvalue': np.float64(0.11773177998716214),
  'rel_effect_size': 0.08048664016431273,
  'rel_effect_size_ci_lower': -0.019515294044061937,
  'rel_effect_size_ci_upper': 0.1906880061278886,
  'statistic': 1.5647028839586707,
  'treatment': 0.5730905412240769},
 {'control': 5.241028175976273,
  'effect_size': 0.4890831037404775,
  'effect_size_ci_lower': -0.13261881482742033,
  'effect_size_ci_upper': 1.1107850223083753,
  'metric': 'revenue_per_user',
  'pvalue': np.float64(0.1230698855425058),
  'rel_effect_size': 0.09331815958981626,
  'rel_effect_size_ci_lower': -0.02373770894855798,
  'rel_effect_size_ci_upper': 0.22440926894909308,
  'statistic': 1.5423440700784083,
  'treatment': 5.73011127971675})
Source code in src/tea_tasting/experiment.py
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
@tea_tasting.utils._cache_method
def to_dicts(self) -> tuple[dict[str, object], ...]:
    """Convert the result to a sequence of dictionaries.

    Examples:
        ```pycon
        >>> import pprint
        >>> import tea_tasting as tt

        >>> experiment = tt.Experiment(
        ...     orders_per_user=tt.Mean("orders"),
        ...     revenue_per_user=tt.Mean("revenue"),
        ... )
        >>> data = tt.make_users_data(seed=42)
        >>> result = experiment.analyze(data)
        >>> pprint.pprint(result.to_dicts())
        ({'control': 0.5304003954522986,
          'effect_size': 0.04269014577177832,
          'effect_size_ci_lower': -0.010800201598205515,
          'effect_size_ci_upper': 0.09618049314176216,
          'metric': 'orders_per_user',
          'pvalue': np.float64(0.11773177998716214),
          'rel_effect_size': 0.08048664016431273,
          'rel_effect_size_ci_lower': -0.019515294044061937,
          'rel_effect_size_ci_upper': 0.1906880061278886,
          'statistic': 1.5647028839586707,
          'treatment': 0.5730905412240769},
         {'control': 5.241028175976273,
          'effect_size': 0.4890831037404775,
          'effect_size_ci_lower': -0.13261881482742033,
          'effect_size_ci_upper': 1.1107850223083753,
          'metric': 'revenue_per_user',
          'pvalue': np.float64(0.1230698855425058),
          'rel_effect_size': 0.09331815958981626,
          'rel_effect_size_ci_lower': -0.02373770894855798,
          'rel_effect_size_ci_upper': 0.22440926894909308,
          'statistic': 1.5423440700784083,
          'treatment': 5.73011127971675})

        ```
    """
    return tuple(
        {"metric": k} | (v if isinstance(v, dict) else v._asdict())
        for k, v in self.items()
    )  # type: ignore

to_html(keys=None, formatter=get_and_format_num, *, max_rows=None, indent=None) #

Convert the object to HTML.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None
indent str | None

Whitespace to insert for each indentation level. If None, do not indent.

None

Returns:

Type Description
str

A table with results rendered as HTML.

Source code in src/tea_tasting/utils.py
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def to_html(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
    indent: str | None = None,
) -> str:
    """Convert the object to HTML.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.
        indent: Whitespace to insert for each indentation level. If `None`,
            do not indent.

    Returns:
        A table with results rendered as HTML.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    table = ET.Element(
        "table",
        {"class": "dataframe", "style": "text-align: right;"},
    )
    thead = ET.SubElement(table, "thead")
    thead_tr = ET.SubElement(thead, "tr")
    for key in keys:
        th = ET.SubElement(thead_tr, "th")
        th.text = key
    tbody = ET.SubElement(table, "tbody")
    for pretty_dict in self.to_pretty_dicts(keys, formatter, max_rows=max_rows):
        tr = ET.SubElement(tbody, "tr")
        for key in keys:
            td = ET.SubElement(tr, "td")
            td.text = pretty_dict[key]
    if indent is not None:
        ET.indent(table, space=indent)
    return ET.tostring(table, encoding="unicode", method="html")

to_pandas() #

Convert the object to a Pandas DataFrame.

Source code in src/tea_tasting/utils.py
308
309
310
311
312
@_cache_method
def to_pandas(self) -> pd.DataFrame:
    """Convert the object to a Pandas DataFrame."""
    import pandas as pd
    return pd.DataFrame.from_records(self.to_dicts())

to_polars() #

Convert the object to a Polars DataFrame.

Source code in src/tea_tasting/utils.py
314
315
316
317
318
@_cache_method
def to_polars(self) -> pl.DataFrame:
    """Convert the object to a Polars DataFrame."""
    import polars as pl
    return pl.from_dicts(self.to_dicts())

to_pretty_dicts(keys=None, formatter=get_and_format_num, *, max_rows=None) #

Convert the object to a list of dictionaries with formatted values.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None

Returns:

Type Description
list[dict[str, str]]

List of dictionaries with formatted values.

Source code in src/tea_tasting/utils.py
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def to_pretty_dicts(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
) -> list[dict[str, str]]:
    """Convert the object to a list of dictionaries with formatted values.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.

    Returns:
        List of dictionaries with formatted values.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    dicts = self.to_dicts()
    if max_rows <= 0 or len(dicts) <= max_rows:
        return [{key: formatter(data, key) for key in keys} for data in dicts]

    bottom = max_rows // 2
    top = max_rows - bottom
    return (
        [{key: formatter(data, key) for key in keys} for data in dicts[:top]] +
        [dict.fromkeys(keys, "…")] +
        [{key: formatter(data, key) for key in keys} for data in dicts[-bottom:]]
    )

to_string(keys=None, formatter=get_and_format_num, *, max_rows=None) #

Convert the object to a string.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None

Returns:

Type Description
str

A table with results rendered as string.

Source code in src/tea_tasting/utils.py
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
def to_string(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
) -> str:
    """Convert the object to a string.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.

    Returns:
        A table with results rendered as string.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    pretty_dicts = self.to_pretty_dicts(keys, formatter, max_rows=max_rows)
    widths = {key: len(key) for key in keys}
    for pretty_dict in pretty_dicts:
        for key in keys:
            widths[key] = max(widths[key], len(pretty_dict[key]))

    sep = " "
    rows = [sep.join(key.rjust(widths[key]) for key in keys)]
    rows.extend(
        sep.join(pretty_dict[key].rjust(widths[key]) for key in keys)
        for pretty_dict in pretty_dicts
    )
    return "\n".join(rows)

with_defaults(*, keys=None, max_rows=None) #

Copies the object and sets the new default parameters.

Parameters:

Name Type Description Default
keys Sequence[str] | None

New default keys for the methods to_pretty_dicts, to_string, and to_html.

None
max_rows int | None

New default max_rows for the methods to_pretty_dicts, to_string, and to_html.

None

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default keys.

Source code in src/tea_tasting/utils.py
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def with_defaults(
    self: DictsReprMixinT,
    *,
    keys: Sequence[str] | None = None,
    max_rows: int | None = None,
) -> DictsReprMixinT:
    """Copies the object and sets the new default parameters.

    Args:
        keys: New default `keys` for the methods `to_pretty_dicts`, `to_string`,
            and `to_html`.
        max_rows: New default `max_rows` for the methods `to_pretty_dicts`,
            `to_string`, and `to_html`.

    Returns:
        A copy of the object with the new default keys.
    """
    new_instance = self.__class__.__new__(self.__class__)
    new_instance.__dict__.update(self.__dict__)
    new_instance._cache = None
    if keys is not None:
        new_instance.default_keys = keys
    if max_rows is not None:
        new_instance.default_max_rows = max_rows
    return new_instance

with_keys(keys) #

Copies the object and sets the new default keys.

Parameters:

Name Type Description Default
keys Sequence[str]

New default keys for the methods to_pretty_dicts, to_string, and to_html.

required

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default keys.

Source code in src/tea_tasting/utils.py
516
517
518
519
520
521
522
523
524
525
526
def with_keys(self: DictsReprMixinT, keys: Sequence[str]) -> DictsReprMixinT:
    """Copies the object and sets the new default `keys`.

    Args:
        keys: New default `keys` for the methods `to_pretty_dicts`, `to_string`,
            and `to_html`.

    Returns:
        A copy of the object with the new default `keys`.
    """
    return self.with_defaults(keys=keys)

with_max_rows(max_rows) #

Copies the object and sets the new default max_rows.

Parameters:

Name Type Description Default
max_rows int

New default max_rows for the methods to_pretty_dicts, to_string, and to_html.

required

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default max_rows.

Source code in src/tea_tasting/utils.py
529
530
531
532
533
534
535
536
537
538
539
def with_max_rows(self: DictsReprMixinT, max_rows: int) -> DictsReprMixinT:
    """Copies the object and sets the new default `max_rows`.

    Args:
        max_rows: New default `max_rows` for the methods `to_pretty_dicts`,
            `to_string`, and `to_html`.

    Returns:
        A copy of the object with the new default `max_rows`.
    """
    return self.with_defaults(max_rows=max_rows)

ExperimentResults #

Bases: DictsReprMixin, UserDict[tuple[object, object], ExperimentResult]

Experiment results for multiple pairs of variants.

to_arrow() #

Convert the object to a PyArrow Table.

Source code in src/tea_tasting/utils.py
303
304
305
306
@_cache_method
def to_arrow(self) -> pa.Table:
    """Convert the object to a PyArrow Table."""
    return pa.Table.from_pylist(self.to_dicts())

to_dicts() #

Convert the results to a sequence of dictionaries.

Source code in src/tea_tasting/experiment.py
111
112
113
114
115
116
117
118
@tea_tasting.utils._cache_method
def to_dicts(self) -> tuple[dict[str, object], ...]:
    """Convert the results to a sequence of dictionaries."""
    return tuple(
        {"variants": str(variants)} | metric_result
        for variants, experiment_result in self.items()
        for metric_result in experiment_result.to_dicts()
    )

to_html(keys=None, formatter=get_and_format_num, *, max_rows=None, indent=None) #

Convert the object to HTML.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None
indent str | None

Whitespace to insert for each indentation level. If None, do not indent.

None

Returns:

Type Description
str

A table with results rendered as HTML.

Source code in src/tea_tasting/utils.py
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def to_html(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
    indent: str | None = None,
) -> str:
    """Convert the object to HTML.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.
        indent: Whitespace to insert for each indentation level. If `None`,
            do not indent.

    Returns:
        A table with results rendered as HTML.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    table = ET.Element(
        "table",
        {"class": "dataframe", "style": "text-align: right;"},
    )
    thead = ET.SubElement(table, "thead")
    thead_tr = ET.SubElement(thead, "tr")
    for key in keys:
        th = ET.SubElement(thead_tr, "th")
        th.text = key
    tbody = ET.SubElement(table, "tbody")
    for pretty_dict in self.to_pretty_dicts(keys, formatter, max_rows=max_rows):
        tr = ET.SubElement(tbody, "tr")
        for key in keys:
            td = ET.SubElement(tr, "td")
            td.text = pretty_dict[key]
    if indent is not None:
        ET.indent(table, space=indent)
    return ET.tostring(table, encoding="unicode", method="html")

to_pandas() #

Convert the object to a Pandas DataFrame.

Source code in src/tea_tasting/utils.py
308
309
310
311
312
@_cache_method
def to_pandas(self) -> pd.DataFrame:
    """Convert the object to a Pandas DataFrame."""
    import pandas as pd
    return pd.DataFrame.from_records(self.to_dicts())

to_polars() #

Convert the object to a Polars DataFrame.

Source code in src/tea_tasting/utils.py
314
315
316
317
318
@_cache_method
def to_polars(self) -> pl.DataFrame:
    """Convert the object to a Polars DataFrame."""
    import polars as pl
    return pl.from_dicts(self.to_dicts())

to_pretty_dicts(keys=None, formatter=get_and_format_num, *, max_rows=None) #

Convert the object to a list of dictionaries with formatted values.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None

Returns:

Type Description
list[dict[str, str]]

List of dictionaries with formatted values.

Source code in src/tea_tasting/utils.py
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def to_pretty_dicts(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
) -> list[dict[str, str]]:
    """Convert the object to a list of dictionaries with formatted values.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.

    Returns:
        List of dictionaries with formatted values.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    dicts = self.to_dicts()
    if max_rows <= 0 or len(dicts) <= max_rows:
        return [{key: formatter(data, key) for key in keys} for data in dicts]

    bottom = max_rows // 2
    top = max_rows - bottom
    return (
        [{key: formatter(data, key) for key in keys} for data in dicts[:top]] +
        [dict.fromkeys(keys, "…")] +
        [{key: formatter(data, key) for key in keys} for data in dicts[-bottom:]]
    )

to_string(keys=None, formatter=get_and_format_num, *, max_rows=None) #

Convert the object to a string.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None

Returns:

Type Description
str

A table with results rendered as string.

Source code in src/tea_tasting/utils.py
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
def to_string(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
) -> str:
    """Convert the object to a string.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.

    Returns:
        A table with results rendered as string.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    pretty_dicts = self.to_pretty_dicts(keys, formatter, max_rows=max_rows)
    widths = {key: len(key) for key in keys}
    for pretty_dict in pretty_dicts:
        for key in keys:
            widths[key] = max(widths[key], len(pretty_dict[key]))

    sep = " "
    rows = [sep.join(key.rjust(widths[key]) for key in keys)]
    rows.extend(
        sep.join(pretty_dict[key].rjust(widths[key]) for key in keys)
        for pretty_dict in pretty_dicts
    )
    return "\n".join(rows)

with_defaults(*, keys=None, max_rows=None) #

Copies the object and sets the new default parameters.

Parameters:

Name Type Description Default
keys Sequence[str] | None

New default keys for the methods to_pretty_dicts, to_string, and to_html.

None
max_rows int | None

New default max_rows for the methods to_pretty_dicts, to_string, and to_html.

None

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default keys.

Source code in src/tea_tasting/utils.py
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def with_defaults(
    self: DictsReprMixinT,
    *,
    keys: Sequence[str] | None = None,
    max_rows: int | None = None,
) -> DictsReprMixinT:
    """Copies the object and sets the new default parameters.

    Args:
        keys: New default `keys` for the methods `to_pretty_dicts`, `to_string`,
            and `to_html`.
        max_rows: New default `max_rows` for the methods `to_pretty_dicts`,
            `to_string`, and `to_html`.

    Returns:
        A copy of the object with the new default keys.
    """
    new_instance = self.__class__.__new__(self.__class__)
    new_instance.__dict__.update(self.__dict__)
    new_instance._cache = None
    if keys is not None:
        new_instance.default_keys = keys
    if max_rows is not None:
        new_instance.default_max_rows = max_rows
    return new_instance

with_keys(keys) #

Copies the object and sets the new default keys.

Parameters:

Name Type Description Default
keys Sequence[str]

New default keys for the methods to_pretty_dicts, to_string, and to_html.

required

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default keys.

Source code in src/tea_tasting/utils.py
516
517
518
519
520
521
522
523
524
525
526
def with_keys(self: DictsReprMixinT, keys: Sequence[str]) -> DictsReprMixinT:
    """Copies the object and sets the new default `keys`.

    Args:
        keys: New default `keys` for the methods `to_pretty_dicts`, `to_string`,
            and `to_html`.

    Returns:
        A copy of the object with the new default `keys`.
    """
    return self.with_defaults(keys=keys)

with_max_rows(max_rows) #

Copies the object and sets the new default max_rows.

Parameters:

Name Type Description Default
max_rows int

New default max_rows for the methods to_pretty_dicts, to_string, and to_html.

required

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default max_rows.

Source code in src/tea_tasting/utils.py
529
530
531
532
533
534
535
536
537
538
539
def with_max_rows(self: DictsReprMixinT, max_rows: int) -> DictsReprMixinT:
    """Copies the object and sets the new default `max_rows`.

    Args:
        max_rows: New default `max_rows` for the methods `to_pretty_dicts`,
            `to_string`, and `to_html`.

    Returns:
        A copy of the object with the new default `max_rows`.
    """
    return self.with_defaults(max_rows=max_rows)

SimulationResults #

Bases: DictsReprMixin, UserList[ExperimentResult]

Simulation results.

Simulations are not enumerated for better performance.

to_arrow() #

Convert the object to a PyArrow Table.

Source code in src/tea_tasting/utils.py
303
304
305
306
@_cache_method
def to_arrow(self) -> pa.Table:
    """Convert the object to a PyArrow Table."""
    return pa.Table.from_pylist(self.to_dicts())

to_dicts() #

Convert the results to a sequence of dictionaries.

Source code in src/tea_tasting/experiment.py
136
137
138
139
140
141
142
@tea_tasting.utils._cache_method
def to_dicts(self) -> tuple[dict[str, object], ...]:
    """Convert the results to a sequence of dictionaries."""
    return tuple(itertools.chain.from_iterable(
        experiment_result.to_dicts()
        for experiment_result in self
    ))

to_html(keys=None, formatter=get_and_format_num, *, max_rows=None, indent=None) #

Convert the object to HTML.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None
indent str | None

Whitespace to insert for each indentation level. If None, do not indent.

None

Returns:

Type Description
str

A table with results rendered as HTML.

Source code in src/tea_tasting/utils.py
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def to_html(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
    indent: str | None = None,
) -> str:
    """Convert the object to HTML.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.
        indent: Whitespace to insert for each indentation level. If `None`,
            do not indent.

    Returns:
        A table with results rendered as HTML.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    table = ET.Element(
        "table",
        {"class": "dataframe", "style": "text-align: right;"},
    )
    thead = ET.SubElement(table, "thead")
    thead_tr = ET.SubElement(thead, "tr")
    for key in keys:
        th = ET.SubElement(thead_tr, "th")
        th.text = key
    tbody = ET.SubElement(table, "tbody")
    for pretty_dict in self.to_pretty_dicts(keys, formatter, max_rows=max_rows):
        tr = ET.SubElement(tbody, "tr")
        for key in keys:
            td = ET.SubElement(tr, "td")
            td.text = pretty_dict[key]
    if indent is not None:
        ET.indent(table, space=indent)
    return ET.tostring(table, encoding="unicode", method="html")

to_pandas() #

Convert the object to a Pandas DataFrame.

Source code in src/tea_tasting/utils.py
308
309
310
311
312
@_cache_method
def to_pandas(self) -> pd.DataFrame:
    """Convert the object to a Pandas DataFrame."""
    import pandas as pd
    return pd.DataFrame.from_records(self.to_dicts())

to_polars() #

Convert the object to a Polars DataFrame.

Source code in src/tea_tasting/utils.py
314
315
316
317
318
@_cache_method
def to_polars(self) -> pl.DataFrame:
    """Convert the object to a Polars DataFrame."""
    import polars as pl
    return pl.from_dicts(self.to_dicts())

to_pretty_dicts(keys=None, formatter=get_and_format_num, *, max_rows=None) #

Convert the object to a list of dictionaries with formatted values.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None

Returns:

Type Description
list[dict[str, str]]

List of dictionaries with formatted values.

Source code in src/tea_tasting/utils.py
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def to_pretty_dicts(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
) -> list[dict[str, str]]:
    """Convert the object to a list of dictionaries with formatted values.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.

    Returns:
        List of dictionaries with formatted values.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    dicts = self.to_dicts()
    if max_rows <= 0 or len(dicts) <= max_rows:
        return [{key: formatter(data, key) for key in keys} for data in dicts]

    bottom = max_rows // 2
    top = max_rows - bottom
    return (
        [{key: formatter(data, key) for key in keys} for data in dicts[:top]] +
        [dict.fromkeys(keys, "…")] +
        [{key: formatter(data, key) for key in keys} for data in dicts[-bottom:]]
    )

to_string(keys=None, formatter=get_and_format_num, *, max_rows=None) #

Convert the object to a string.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, object], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
max_rows int | None

Maximum number of rows to convert. If None, the default value will be used. If 0 or less, all rows will be converted.

None

Returns:

Type Description
str

A table with results rendered as string.

Source code in src/tea_tasting/utils.py
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
def to_string(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, object], str], str] = get_and_format_num,
    *,
    max_rows: int | None = None,
) -> str:
    """Convert the object to a string.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        max_rows: Maximum number of rows to convert.
            If `None`, the default value will be used.
            If `0` or less, all rows will be converted.

    Returns:
        A table with results rendered as string.
    """
    if keys is None:
        keys = self.default_keys
    if max_rows is None:
        max_rows = self.default_max_rows

    pretty_dicts = self.to_pretty_dicts(keys, formatter, max_rows=max_rows)
    widths = {key: len(key) for key in keys}
    for pretty_dict in pretty_dicts:
        for key in keys:
            widths[key] = max(widths[key], len(pretty_dict[key]))

    sep = " "
    rows = [sep.join(key.rjust(widths[key]) for key in keys)]
    rows.extend(
        sep.join(pretty_dict[key].rjust(widths[key]) for key in keys)
        for pretty_dict in pretty_dicts
    )
    return "\n".join(rows)

with_defaults(*, keys=None, max_rows=None) #

Copies the object and sets the new default parameters.

Parameters:

Name Type Description Default
keys Sequence[str] | None

New default keys for the methods to_pretty_dicts, to_string, and to_html.

None
max_rows int | None

New default max_rows for the methods to_pretty_dicts, to_string, and to_html.

None

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default keys.

Source code in src/tea_tasting/utils.py
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def with_defaults(
    self: DictsReprMixinT,
    *,
    keys: Sequence[str] | None = None,
    max_rows: int | None = None,
) -> DictsReprMixinT:
    """Copies the object and sets the new default parameters.

    Args:
        keys: New default `keys` for the methods `to_pretty_dicts`, `to_string`,
            and `to_html`.
        max_rows: New default `max_rows` for the methods `to_pretty_dicts`,
            `to_string`, and `to_html`.

    Returns:
        A copy of the object with the new default keys.
    """
    new_instance = self.__class__.__new__(self.__class__)
    new_instance.__dict__.update(self.__dict__)
    new_instance._cache = None
    if keys is not None:
        new_instance.default_keys = keys
    if max_rows is not None:
        new_instance.default_max_rows = max_rows
    return new_instance

with_keys(keys) #

Copies the object and sets the new default keys.

Parameters:

Name Type Description Default
keys Sequence[str]

New default keys for the methods to_pretty_dicts, to_string, and to_html.

required

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default keys.

Source code in src/tea_tasting/utils.py
516
517
518
519
520
521
522
523
524
525
526
def with_keys(self: DictsReprMixinT, keys: Sequence[str]) -> DictsReprMixinT:
    """Copies the object and sets the new default `keys`.

    Args:
        keys: New default `keys` for the methods `to_pretty_dicts`, `to_string`,
            and `to_html`.

    Returns:
        A copy of the object with the new default `keys`.
    """
    return self.with_defaults(keys=keys)

with_max_rows(max_rows) #

Copies the object and sets the new default max_rows.

Parameters:

Name Type Description Default
max_rows int

New default max_rows for the methods to_pretty_dicts, to_string, and to_html.

required

Returns:

Type Description
DictsReprMixinT

A copy of the object with the new default max_rows.

Source code in src/tea_tasting/utils.py
529
530
531
532
533
534
535
536
537
538
539
def with_max_rows(self: DictsReprMixinT, max_rows: int) -> DictsReprMixinT:
    """Copies the object and sets the new default `max_rows`.

    Args:
        max_rows: New default `max_rows` for the methods `to_pretty_dicts`,
            `to_string`, and `to_html`.

    Returns:
        A copy of the object with the new default `max_rows`.
    """
    return self.with_defaults(max_rows=max_rows)