tea_tasting.experiment
#
Experiment and experiment result.
Experiment(metrics=None, variant='variant', **kw_metrics)
#
Bases: ReprMixin
Experiment definition: metrics and variant column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
metrics |
dict[str, MetricBase[Any]] | None
|
Dictionary of metrics with metric names as keys. |
None
|
variant |
str
|
Variant column name. |
'variant'
|
kw_metrics |
MetricBase[Any]
|
Metrics with metric names as parameter names. |
{}
|
Examples:
>>> import tea_tasting as tt
>>> experiment = tt.Experiment(
... sessions_per_user=tt.Mean("sessions"),
... orders_per_session=tt.RatioOfMeans("orders", "sessions"),
... orders_per_user=tt.Mean("orders"),
... revenue_per_user=tt.Mean("revenue"),
... )
>>> data = tt.make_users_data(seed=42)
>>> result = experiment.analyze(data)
>>> print(result)
metric control treatment rel_effect_size rel_effect_size_ci pvalue
sessions_per_user 2.00 1.98 -0.66% [-3.7%, 2.5%] 0.674
orders_per_session 0.266 0.289 8.8% [-0.89%, 19%] 0.0762
orders_per_user 0.530 0.573 8.0% [-2.0%, 19%] 0.118
revenue_per_user 5.24 5.73 9.3% [-2.4%, 22%] 0.123
Using the first argument metrics
which accepts metrics in a form of dictionary:
>>> experiment = tt.Experiment({
... "sessions per user": tt.Mean("sessions"),
... "orders per session": tt.RatioOfMeans("orders", "sessions"),
... "orders per user": tt.Mean("orders"),
... "revenue per user": tt.Mean("revenue"),
... })
>>> data = tt.make_users_data(seed=42)
>>> result = experiment.analyze(data)
>>> print(result)
metric control treatment rel_effect_size rel_effect_size_ci pvalue
sessions per user 2.00 1.98 -0.66% [-3.7%, 2.5%] 0.674
orders per session 0.266 0.289 8.8% [-0.89%, 19%] 0.0762
orders per user 0.530 0.573 8.0% [-2.0%, 19%] 0.118
revenue per user 5.24 5.73 9.3% [-2.4%, 22%] 0.123
Power analysis:
>>> data = tt.make_users_data(
... seed=42,
... sessions_uplift=0,
... orders_uplift=0,
... revenue_uplift=0,
... covariates=True,
... )
>>> with tt.config_context(n_obs=(10_000, 20_000)):
... experiment = tt.Experiment(
... sessions_per_user=tt.Mean("sessions", "sessions_covariate"),
... orders_per_session=tt.RatioOfMeans(
... numer="orders",
... denom="sessions",
... numer_covariate="orders_covariate",
... denom_covariate="sessions_covariate",
... ),
... orders_per_user=tt.Mean("orders", "orders_covariate"),
... revenue_per_user=tt.Mean("revenue", "revenue_covariate"),
... )
>>> power_result = experiment.solve_power(data)
>>> print(power_result)
metric power effect_size rel_effect_size n_obs
sessions_per_user 80% 0.0458 2.3% 10000
sessions_per_user 80% 0.0324 1.6% 20000
orders_per_session 80% 0.0177 6.8% 10000
orders_per_session 80% 0.0125 4.8% 20000
orders_per_user 80% 0.0374 7.2% 10000
orders_per_user 80% 0.0264 5.1% 20000
revenue_per_user 80% 0.488 9.2% 10000
revenue_per_user 80% 0.345 6.5% 20000
Source code in src/tea_tasting/experiment.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
analyze(data, control=None, *, all_variants=False)
#
Analyze the experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
IntoFrame | Table
|
Experimental data. |
required |
control |
Any
|
Control variant. If |
None
|
all_variants |
bool
|
If |
False
|
Returns:
Type | Description |
---|---|
ExperimentResult | ExperimentResults
|
Experiment result. |
Source code in src/tea_tasting/experiment.py
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
|
solve_power(data, parameter='rel_effect_size')
#
Solve for a parameter of the power of a test.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
IntoFrame | Table
|
Sample data. |
required |
parameter |
Literal['power', 'effect_size', 'rel_effect_size', 'n_obs']
|
Parameter name. |
'rel_effect_size'
|
Returns:
Type | Description |
---|---|
ExperimentPowerResult
|
Power analysis result. |
Source code in src/tea_tasting/experiment.py
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
|
ExperimentPowerResult
#
Bases: UserDict[str, MetricPowerResults[Any]]
, DictsReprMixin
Result of the analysis of power in a experiment.
to_arrow()
#
Convert the object to a PyArrow Table.
Source code in src/tea_tasting/utils.py
247 248 249 |
|
to_dicts()
#
Convert the result to a sequence of dictionaries.
Source code in src/tea_tasting/experiment.py
114 115 116 117 118 119 |
|
to_html(keys=None, formatter=get_and_format_num, *, indent=None)
#
Convert the object to HTML.
Default formatting rules:
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
or is greater than or equal to10_000_000
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {upper_bound}]"
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
indent |
str | None
|
Whitespace to insert for each indentation level. If |
None
|
Returns:
Type | Description |
---|---|
str
|
A table with results rendered as HTML. |
Source code in src/tea_tasting/utils.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
|
to_pandas()
#
Convert the object to a Pandas DataFrame.
Source code in src/tea_tasting/utils.py
251 252 253 254 |
|
to_polars()
#
Convert the object to a Polars DataFrame.
Source code in src/tea_tasting/utils.py
256 257 258 259 |
|
to_pretty_dicts(keys=None, formatter=get_and_format_num)
#
Convert the object to a list of dictionaries with formatted values.
Default formatting rules:
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
or is greater than or equal to10_000_000
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {upper_bound}]"
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
list[dict[str, str]]
|
List of dictionaries with formatted values. |
Source code in src/tea_tasting/utils.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
to_string(keys=None, formatter=get_and_format_num)
#
Convert the object to a string.
Default formatting rules:
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
or is greater than or equal to10_000_000
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {upper_bound}]"
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
str
|
A table with results rendered as string. |
Source code in src/tea_tasting/utils.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
ExperimentResult
#
Bases: UserDict[str, MetricResult]
, DictsReprMixin
Experiment result for a pair of variants.
to_arrow()
#
Convert the object to a PyArrow Table.
Source code in src/tea_tasting/utils.py
247 248 249 |
|
to_dicts()
#
Convert the result to a sequence of dictionaries.
Examples:
>>> import pprint
>>> import tea_tasting as tt
>>> experiment = tt.Experiment(
... orders_per_user=tt.Mean("orders"),
... revenue_per_user=tt.Mean("revenue"),
... )
>>> data = tt.make_users_data(seed=42)
>>> result = experiment.analyze(data)
>>> pprint.pprint(result.to_dicts())
({'control': 0.5304003954522986,
'effect_size': 0.04269014577177832,
'effect_size_ci_lower': -0.010800201598205515,
'effect_size_ci_upper': 0.09618049314176216,
'metric': 'orders_per_user',
'pvalue': np.float64(0.11773177998716214),
'rel_effect_size': 0.08048664016431273,
'rel_effect_size_ci_lower': -0.019515294044061937,
'rel_effect_size_ci_upper': 0.1906880061278886,
'statistic': 1.5647028839586707,
'treatment': 0.5730905412240769},
{'control': 5.241028175976273,
'effect_size': 0.4890831037404775,
'effect_size_ci_lower': -0.13261881482742033,
'effect_size_ci_upper': 1.1107850223083753,
'metric': 'revenue_per_user',
'pvalue': np.float64(0.1230698855425058),
'rel_effect_size': 0.09331815958981626,
'rel_effect_size_ci_lower': -0.02373770894855798,
'rel_effect_size_ci_upper': 0.22440926894909308,
'statistic': 1.5423440700784083,
'treatment': 5.73011127971675})
Source code in src/tea_tasting/experiment.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
|
to_html(keys=None, formatter=get_and_format_num, *, indent=None)
#
Convert the object to HTML.
Default formatting rules:
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
or is greater than or equal to10_000_000
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {upper_bound}]"
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
indent |
str | None
|
Whitespace to insert for each indentation level. If |
None
|
Returns:
Type | Description |
---|---|
str
|
A table with results rendered as HTML. |
Source code in src/tea_tasting/utils.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
|
to_pandas()
#
Convert the object to a Pandas DataFrame.
Source code in src/tea_tasting/utils.py
251 252 253 254 |
|
to_polars()
#
Convert the object to a Polars DataFrame.
Source code in src/tea_tasting/utils.py
256 257 258 259 |
|
to_pretty_dicts(keys=None, formatter=get_and_format_num)
#
Convert the object to a list of dictionaries with formatted values.
Default formatting rules:
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
or is greater than or equal to10_000_000
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {upper_bound}]"
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
list[dict[str, str]]
|
List of dictionaries with formatted values. |
Source code in src/tea_tasting/utils.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
to_string(keys=None, formatter=get_and_format_num)
#
Convert the object to a string.
Default formatting rules:
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
or is greater than or equal to10_000_000
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {upper_bound}]"
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
str
|
A table with results rendered as string. |
Source code in src/tea_tasting/utils.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
ExperimentResults
#
Bases: UserDict[tuple[Any, Any], ExperimentResult]
, DictsReprMixin
Experiment results for multiple pairs of variants.
to_arrow()
#
Convert the object to a PyArrow Table.
Source code in src/tea_tasting/utils.py
247 248 249 |
|
to_dicts()
#
Convert the result to a sequence of dictionaries.
Source code in src/tea_tasting/experiment.py
98 99 100 101 102 103 104 |
|
to_html(keys=None, formatter=get_and_format_num, *, indent=None)
#
Convert the object to HTML.
Default formatting rules:
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
or is greater than or equal to10_000_000
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {upper_bound}]"
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
indent |
str | None
|
Whitespace to insert for each indentation level. If |
None
|
Returns:
Type | Description |
---|---|
str
|
A table with results rendered as HTML. |
Source code in src/tea_tasting/utils.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
|
to_pandas()
#
Convert the object to a Pandas DataFrame.
Source code in src/tea_tasting/utils.py
251 252 253 254 |
|
to_polars()
#
Convert the object to a Polars DataFrame.
Source code in src/tea_tasting/utils.py
256 257 258 259 |
|
to_pretty_dicts(keys=None, formatter=get_and_format_num)
#
Convert the object to a list of dictionaries with formatted values.
Default formatting rules:
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
or is greater than or equal to10_000_000
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {upper_bound}]"
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
list[dict[str, str]]
|
List of dictionaries with formatted values. |
Source code in src/tea_tasting/utils.py
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
|
to_string(keys=None, formatter=get_and_format_num)
#
Convert the object to a string.
Default formatting rules:
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
or is greater than or equal to10_000_000
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {upper_bound}]"
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
str
|
A table with results rendered as string. |
Source code in src/tea_tasting/utils.py
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|