tea_tasting.experiment
#
Experiment and experiment result.
Experiment(metrics=None, variant='variant', **kw_metrics)
#
Bases: ReprMixin
Experiment definition: metrics and variant column.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
metrics |
dict[str, MetricBase[Any]] | None
|
Dictionary of metrics with metric names as keys. |
None
|
variant |
str
|
Variant column name. |
'variant'
|
kw_metrics |
MetricBase[Any]
|
Metrics with metric names as parameter names. |
{}
|
Examples:
import tea_tasting as tt
experiment = tt.Experiment(
sessions_per_user=tt.Mean("sessions"),
orders_per_session=tt.RatioOfMeans("orders", "sessions"),
orders_per_user=tt.Mean("orders"),
revenue_per_user=tt.Mean("revenue"),
)
data = tt.make_users_data(seed=42)
result = experiment.analyze(data)
print(result)
#> metric control treatment rel_effect_size rel_effect_size_ci pvalue
#> sessions_per_user 2.00 1.98 -0.66% [-3.7%, 2.5%] 0.674
#> orders_per_session 0.266 0.289 8.8% [-0.89%, 19%] 0.0762
#> orders_per_user 0.530 0.573 8.0% [-2.0%, 19%] 0.118
#> revenue_per_user 5.24 5.73 9.3% [-2.4%, 22%] 0.123
Using the first argument metrics
which accepts metrics if a form of dictionary:
experiment = tt.Experiment({
"sessions per user": tt.Mean("sessions"),
"orders per session": tt.RatioOfMeans("orders", "sessions"),
"orders per user": tt.Mean("orders"),
"revenue per user": tt.Mean("revenue"),
})
data = tt.make_users_data(seed=42)
result = experiment.analyze(data)
print(result)
#> metric control treatment rel_effect_size rel_effect_size_ci pvalue
#> sessions per user 2.00 1.98 -0.66% [-3.7%, 2.5%] 0.674
#> orders per session 0.266 0.289 8.8% [-0.89%, 19%] 0.0762
#> orders per user 0.530 0.573 8.0% [-2.0%, 19%] 0.118
#> revenue per user 5.24 5.73 9.3% [-2.4%, 22%] 0.123
Power analysis:
data = tt.make_users_data(
seed=42,
sessions_uplift=0,
orders_uplift=0,
revenue_uplift=0,
covariates=True,
)
with tt.config_context(n_obs=(10_000, 20_000)):
experiment = tt.Experiment(
sessions_per_user=tt.Mean("sessions", "sessions_covariate"),
orders_per_session=tt.RatioOfMeans(
numer="orders",
denom="sessions",
numer_covariate="orders_covariate",
denom_covariate="sessions_covariate",
),
orders_per_user=tt.Mean("orders", "orders_covariate"),
revenue_per_user=tt.Mean("revenue", "revenue_covariate"),
)
power_result = experiment.solve_power(data)
print(power_result)
#> metric power effect_size rel_effect_size n_obs
#> sessions_per_user 80% 0.0458 2.3% 10000
#> sessions_per_user 80% 0.0324 1.6% 20000
#> orders_per_session 80% 0.0177 6.8% 10000
#> orders_per_session 80% 0.0125 4.8% 20000
#> orders_per_user 80% 0.0374 7.2% 10000
#> orders_per_user 80% 0.0264 5.1% 20000
#> revenue_per_user 80% 0.488 9.2% 10000
#> revenue_per_user 80% 0.345 6.5% 20000
Source code in src/tea_tasting/experiment.py
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
|
analyze(data, control=None, *, all_variants=False)
#
Analyze the experiment.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame | Table
|
Experimental data. |
required |
control |
Any
|
Control variant. If |
None
|
all_variants |
bool
|
If |
False
|
Returns:
Type | Description |
---|---|
ExperimentResult | ExperimentResults
|
Experiment result. |
Source code in src/tea_tasting/experiment.py
solve_power(data, parameter='rel_effect_size')
#
Solve for a parameter of the power of a test.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame | Table
|
Sample data. |
required |
parameter |
Literal['power', 'effect_size', 'rel_effect_size', 'n_obs']
|
Parameter name. |
'rel_effect_size'
|
Returns:
Type | Description |
---|---|
ExperimentPowerResult
|
Power analysis result. |
Source code in src/tea_tasting/experiment.py
ExperimentPowerResult
#
Bases: UserDict[str, MetricPowerResults[Any]]
, PrettyDictsMixin
Result of the analysis of power in a experiment.
to_dicts()
#
Convert the result to a sequence of dictionaries.
Source code in src/tea_tasting/experiment.py
to_html(keys=None, formatter=get_and_format_num)
#
Convert the object to HTML.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
str
|
A table with results rendered as HTML. |
Default formatting rules
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {lower_bound}]"
.
Source code in src/tea_tasting/utils.py
to_pandas()
#
to_pretty(keys=None, formatter=get_and_format_num)
#
Convert the object to a Pandas Dataframe with formatted values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
DataFrame
|
Pandas Dataframe with formatted values. |
Default formatting rules
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {lower_bound}]"
.
Source code in src/tea_tasting/utils.py
to_string(keys=None, formatter=get_and_format_num)
#
Convert the object to a string.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Keys to convert. If a key is not defined in the dictionary
it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
str
|
A table with results rendered as string. |
Default formatting rules
- If a name starts with
"rel_"
or equals to"power"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {lower_bound}]"
.
Source code in src/tea_tasting/utils.py
ExperimentResult
#
Bases: UserDict[str, MetricResult]
, PrettyDictsMixin
Experiment result for a pair of variants.
to_dicts()
#
Convert the result to a sequence of dictionaries.
Examples:
import pprint
import tea_tasting as tt
experiment = tt.Experiment(
orders_per_user=tt.Mean("orders"),
revenue_per_user=tt.Mean("revenue"),
)
data = tt.make_users_data(seed=42)
result = experiment.analyze(data)
pprint.pprint(result.to_dicts())
#> ({'control': 0.5304003954522986,
#> 'effect_size': 0.04269014577177832,
#> 'effect_size_ci_lower': -0.010800201598205564,
#> 'effect_size_ci_upper': 0.0961804931417622,
#> 'metric': 'orders_per_user',
#> 'pvalue': 0.11773177998716244,
#> 'rel_effect_size': 0.08048664016431273,
#> 'rel_effect_size_ci_lower': -0.019515294044062048,
#> 'rel_effect_size_ci_upper': 0.19068800612788883,
#> 'statistic': 1.5647028839586694,
#> 'treatment': 0.5730905412240769},
#> {'control': 5.2410786458606005,
#> 'effect_size': 0.4890530110046889,
#> 'effect_size_ci_lower': -0.13265634499246826,
#> 'effect_size_ci_upper': 1.110762367001846,
#> 'metric': 'revenue_per_user',
#> 'pvalue': 0.123097417367404,
#> 'rel_effect_size': 0.09331151925967429,
#> 'rel_effect_size_ci_lower': -0.023744208691729107,
#> 'rel_effect_size_ci_upper': 0.22440254776265856,
#> 'statistic': 1.5422307220453677,
#> 'treatment': 5.730131656865289})
Source code in src/tea_tasting/experiment.py
to_html(keys=None, formatter=tea_tasting.utils.get_and_format_num)
#
Convert the result to HTML.
Metric result attribute values are converted to strings in a "pretty" format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Metric attribute names. If an attribute is not defined
for a metric it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
str
|
A table with results rendered as HTML. |
Default formatting rules
- If a name starts with
"rel_"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {lower_bound}]"
.
Examples:
import tea_tasting as tt
experiment = tt.Experiment(
orders_per_user=tt.Mean("orders"),
revenue_per_user=tt.Mean("revenue"),
)
data = tt.make_users_data(seed=42)
result = experiment.analyze(data)
print(result.to_html())
#> <table border="1" class="dataframe">
#> <thead>
#> <tr style="text-align: right;">
#> <th>metric</th>
#> <th>control</th>
#> <th>treatment</th>
#> <th>rel_effect_size</th>
#> <th>rel_effect_size_ci</th>
#> <th>pvalue</th>
#> </tr>
#> </thead>
#> <tbody>
#> <tr>
#> <td>orders_per_user</td>
#> <td>0.530</td>
#> <td>0.573</td>
#> <td>8.0%</td>
#> <td>[-2.0%, 19%]</td>
#> <td>0.118</td>
#> </tr>
#> <tr>
#> <td>revenue_per_user</td>
#> <td>5.24</td>
#> <td>5.73</td>
#> <td>9.3%</td>
#> <td>[-2.4%, 22%]</td>
#> <td>0.123</td>
#> </tr>
#> </tbody>
#> </table>
Source code in src/tea_tasting/experiment.py
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
|
to_pandas()
#
Convert the result to a Pandas DataFrame.
Examples:
import tea_tasting as tt
experiment = tt.Experiment(
sessions_per_user=tt.Mean("sessions"),
orders_per_session=tt.RatioOfMeans("orders", "sessions"),
orders_per_user=tt.Mean("orders"),
revenue_per_user=tt.Mean("revenue"),
)
data = tt.make_users_data(seed=42)
result = experiment.analyze(data)
print(result.to_pandas())
#> metric control ... pvalue statistic
#> 0 sessions_per_user 1.996045 ... 0.674021 -0.420667
#> 1 orders_per_session 0.265726 ... 0.076238 1.773406
#> 2 orders_per_user 0.530400 ... 0.117732 1.564703
#> 3 revenue_per_user 5.241079 ... 0.123097 1.542231
#>
#> [4 rows x 11 columns]
Source code in src/tea_tasting/experiment.py
to_pretty(keys=None, formatter=tea_tasting.utils.get_and_format_num)
#
Convert the result to a Pandas Dataframe with formatted values.
Metric result attribute values are converted to strings in a "pretty" format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Metric attribute names. If an attribute is not defined
for a metric it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
DataFrame
|
Pandas Dataframe with formatted values. |
Default formatting rules
- If a name starts with
"rel_"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {lower_bound}]"
.
Examples:
import tea_tasting as tt
experiment = tt.Experiment(
sessions_per_user=tt.Mean("sessions"),
orders_per_session=tt.RatioOfMeans("orders", "sessions"),
orders_per_user=tt.Mean("orders"),
revenue_per_user=tt.Mean("revenue"),
)
data = tt.make_users_data(seed=42)
result = experiment.analyze(data)
print(result.to_pretty(keys=(
"metric",
"control",
"treatment",
"effect_size",
"effect_size_ci",
)))
#> metric control treatment effect_size effect_size_ci
#> 0 sessions_per_user 2.00 1.98 -0.0132 [-0.0750, 0.0485]
#> 1 orders_per_session 0.266 0.289 0.0233 [-0.00246, 0.0491]
#> 2 orders_per_user 0.530 0.573 0.0427 [-0.0108, 0.0962]
#> 3 revenue_per_user 5.24 5.73 0.489 [-0.133, 1.11]
Source code in src/tea_tasting/experiment.py
to_string(keys=None, formatter=tea_tasting.utils.get_and_format_num)
#
Convert the result to a string.
Metric result attribute values are converted to strings in a "pretty" format.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
keys |
Sequence[str] | None
|
Metric attribute names. If an attribute is not defined
for a metric it's assumed to be |
None
|
formatter |
Callable[[dict[str, Any], str], str]
|
Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value. |
get_and_format_num
|
Returns:
Type | Description |
---|---|
str
|
A string with formatted values. |
Default formatting rules
- If a name starts with
"rel_"
consider it a percentage value. Round percentage values to 2 significant digits, multiply by100
and add"%"
. - Round other values to 3 significant values.
- If value is less than
0.001
, format it in exponential presentation. - If a name ends with
"_ci"
, consider it a confidence interval. Look up for attributes"{name}_lower"
and"{name}_upper"
, and format the interval as"[{lower_bound}, {lower_bound}]"
.
Examples:
import tea_tasting as tt
experiment = tt.Experiment(
sessions_per_user=tt.Mean("sessions"),
orders_per_session=tt.RatioOfMeans("orders", "sessions"),
orders_per_user=tt.Mean("orders"),
revenue_per_user=tt.Mean("revenue"),
)
data = tt.make_users_data(seed=42)
result = experiment.analyze(data)
print(result.to_string(keys=(
"metric",
"control",
"treatment",
"effect_size",
"effect_size_ci",
)))
#> metric control treatment effect_size effect_size_ci
#> sessions_per_user 2.00 1.98 -0.0132 [-0.0750, 0.0485]
#> orders_per_session 0.266 0.289 0.0233 [-0.00246, 0.0491]
#> orders_per_user 0.530 0.573 0.0427 [-0.0108, 0.0962]
#> revenue_per_user 5.24 5.73 0.489 [-0.133, 1.11]