Skip to content

tea_tasting.metrics.base #

Base classes for metrics.

AggrCols #

Bases: NamedTuple

Columns to be aggregated for a metric analysis.

Attributes:

Name Type Description
has_count bool

If True, include the sample size.

mean_cols Sequence[str]

Column names for calculation of sample means.

var_cols Sequence[str]

Column names for calculation of sample variances.

cov_cols Sequence[tuple[str, str]]

Pairs of column names for calculation of sample covariances.

MetricBase #

Bases: ABC, Generic[R], ReprMixin

Base class for metrics.

analyze(data, control, treatment, variant) abstractmethod #

Analyze a metric in an experiment.

Parameters:

Name Type Description Default
data IntoFrame | Table

Experimental data.

required
control Any

Control variant.

required
treatment Any

Treatment variant.

required
variant str

Variant column name.

required

Returns:

Type Description
R

Analysis result.

Source code in src/tea_tasting/metrics/base.py
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
@abc.abstractmethod
def analyze(
    self,
    data: narwhals.typing.IntoFrame | ibis.expr.types.Table,
    control: Any,
    treatment: Any,
    variant: str,
) -> R:
    """Analyze a metric in an experiment.

    Args:
        data: Experimental data.
        control: Control variant.
        treatment: Treatment variant.
        variant: Variant column name.

    Returns:
        Analysis result.
    """

MetricBaseAggregated #

Bases: MetricBase[R], _HasAggrCols

Base class for metrics, which are analyzed using aggregated statistics.

aggr_cols: AggrCols abstractmethod property #

Columns to be aggregated for an analysis.

analyze(data, control, treatment, variant=None) #

Analyze a metric in an experiment.

Parameters:

Name Type Description Default
data IntoFrame | Table | dict[Any, Aggregates]

Experimental data.

required
control Any

Control variant.

required
treatment Any

Treatment variant.

required
variant str | None

Variant column name.

None

Returns:

Type Description
R

Analysis result.

Source code in src/tea_tasting/metrics/base.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
def analyze(
    self,
    data: narwhals.typing.IntoFrame | ibis.expr.types.Table | dict[
        Any, tea_tasting.aggr.Aggregates],
    control: Any,
    treatment: Any,
    variant: str | None = None,
) -> R:
    """Analyze a metric in an experiment.

    Args:
        data: Experimental data.
        control: Control variant.
        treatment: Treatment variant.
        variant: Variant column name.

    Returns:
        Analysis result.
    """
    aggr = aggregate_by_variants(
        data,
        aggr_cols=self.aggr_cols,
        variant=variant,
    )
    return self.analyze_aggregates(
        control=aggr[control],
        treatment=aggr[treatment],
    )

analyze_aggregates(control, treatment) abstractmethod #

Analyze metric in an experiment using aggregated statistics.

Parameters:

Name Type Description Default
control Aggregates

Control data.

required
treatment Aggregates

Treatment data.

required

Returns:

Type Description
R

Analysis result.

Source code in src/tea_tasting/metrics/base.py
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
@abc.abstractmethod
def analyze_aggregates(
    self,
    control: tea_tasting.aggr.Aggregates,
    treatment: tea_tasting.aggr.Aggregates,
) -> R:
    """Analyze metric in an experiment using aggregated statistics.

    Args:
        control: Control data.
        treatment: Treatment data.

    Returns:
        Analysis result.
    """

MetricBaseGranular #

Bases: MetricBase[R], _HasCols

Base class for metrics, which are analyzed using granular data.

cols: Sequence[str] abstractmethod property #

Columns to be fetched for an analysis.

analyze(data, control, treatment, variant=None) #

Analyze a metric in an experiment.

Parameters:

Name Type Description Default
data IntoFrame | Table | dict[Any, Table]

Experimental data.

required
control Any

Control variant.

required
treatment Any

Treatment variant.

required
variant str | None

Variant column name.

None

Returns:

Type Description
R

Analysis result.

Source code in src/tea_tasting/metrics/base.py
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
def analyze(
    self,
    data: (
        narwhals.typing.IntoFrame |
        ibis.expr.types.Table |
        dict[Any, pa.Table]
    ),
    control: Any,
    treatment: Any,
    variant: str | None = None,
) -> R:
    """Analyze a metric in an experiment.

    Args:
        data: Experimental data.
        control: Control variant.
        treatment: Treatment variant.
        variant: Variant column name.

    Returns:
        Analysis result.
    """
    dfs = read_granular(
        data,
        cols=self.cols,
        variant=variant,
    )
    return self.analyze_granular(
        control=dfs[control],
        treatment=dfs[treatment],
    )

analyze_granular(control, treatment) abstractmethod #

Analyze metric in an experiment using granular data.

Parameters:

Name Type Description Default
control Table

Control data.

required
treatment Table

Treatment data.

required

Returns:

Type Description
R

Analysis result.

Source code in src/tea_tasting/metrics/base.py
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
@abc.abstractmethod
def analyze_granular(
    self,
    control: pa.Table,
    treatment: pa.Table,
) -> R:
    """Analyze metric in an experiment using granular data.

    Args:
        control: Control data.
        treatment: Treatment data.

    Returns:
        Analysis result.
    """

MetricPowerResults #

Bases: UserList[P], DictsReprMixin

Power analysis results.

to_arrow() #

Convert the object to a PyArrow Table.

Source code in src/tea_tasting/utils.py
247
248
249
def to_arrow(self) -> pa.Table:
    """Convert the object to a PyArrow Table."""
    return pa.Table.from_pylist(self.to_dicts())

to_dicts() #

"Convert the results to a sequence of dictionaries.

Source code in src/tea_tasting/metrics/base.py
38
39
40
def to_dicts(self) -> tuple[dict[str, Any], ...]:
    """"Convert the results to a sequence of dictionaries."""
    return tuple((v if isinstance(v, dict) else v._asdict()) for v in self)

to_html(keys=None, formatter=get_and_format_num, *, indent=None) #

Convert the object to HTML.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, Any], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num
indent str | None

Whitespace to insert for each indentation level. If None, do not indent.

None

Returns:

Type Description
str

A table with results rendered as HTML.

Source code in src/tea_tasting/utils.py
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
def to_html(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, Any], str], str] = get_and_format_num,
    *,
    indent: str | None = None,
) -> str:
    """Convert the object to HTML.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.
        indent: Whitespace to insert for each indentation level. If `None`,
            do not indent.

    Returns:
        A table with results rendered as HTML.
    """
    if keys is None:
        keys = self.default_keys
    table = ET.Element(
        "table",
        {"class": "dataframe", "style": "text-align: right;"},
    )
    thead = ET.SubElement(table, "thead")
    thead_tr = ET.SubElement(thead, "tr")
    for key in keys:
        th = ET.SubElement(thead_tr, "th")
        th.text = key
    tbody = ET.SubElement(table, "tbody")
    for data in self.to_dicts():
        tr = ET.SubElement(tbody, "tr")
        for key in keys:
            td = ET.SubElement(tr, "td")
            td.text = formatter(data, key)
    if indent is not None:
        ET.indent(table, space=indent)
    return ET.tostring(table, encoding="unicode", method="html")

to_pandas() #

Convert the object to a Pandas DataFrame.

Source code in src/tea_tasting/utils.py
251
252
253
254
def to_pandas(self) -> PandasDataFrame:
    """Convert the object to a Pandas DataFrame."""
    import pandas as pd
    return pd.DataFrame.from_records(self.to_dicts())

to_polars() #

Convert the object to a Polars DataFrame.

Source code in src/tea_tasting/utils.py
256
257
258
259
def to_polars(self) -> PolarsDataFrame:
    """Convert the object to a Polars DataFrame."""
    import polars as pl
    return pl.from_dicts(self.to_dicts())

to_pretty_dicts(keys=None, formatter=get_and_format_num) #

Convert the object to a list of dictionaries with formatted values.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, Any], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num

Returns:

Type Description
list[dict[str, str]]

List of dictionaries with formatted values.

Source code in src/tea_tasting/utils.py
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
def to_pretty_dicts(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, Any], str], str] = get_and_format_num,
) -> list[dict[str, str]]:
    """Convert the object to a list of dictionaries with formatted values.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.

    Returns:
        List of dictionaries with formatted values.
    """
    if keys is None:
        keys = self.default_keys
    return [{key: formatter(data, key) for key in keys} for data in self.to_dicts()]

to_string(keys=None, formatter=get_and_format_num) #

Convert the object to a string.

Default formatting rules:

  • If a name starts with "rel_" or equals to "power" consider it a percentage value. Round percentage values to 2 significant digits, multiply by 100 and add "%".
  • Round other values to 3 significant values.
  • If value is less than 0.001 or is greater than or equal to 10_000_000, format it in exponential presentation.
  • If a name ends with "_ci", consider it a confidence interval. Look up for attributes "{name}_lower" and "{name}_upper", and format the interval as "[{lower_bound}, {upper_bound}]".

Parameters:

Name Type Description Default
keys Sequence[str] | None

Keys to convert. If a key is not defined in the dictionary it's assumed to be None.

None
formatter Callable[[dict[str, Any], str], str]

Custom formatter function. It should accept a dictionary of metric result attributes and an attribute name, and return a formatted attribute value.

get_and_format_num

Returns:

Type Description
str

A table with results rendered as string.

Source code in src/tea_tasting/utils.py
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
def to_string(
    self,
    keys: Sequence[str] | None = None,
    formatter: Callable[[dict[str, Any], str], str] = get_and_format_num,
) -> str:
    """Convert the object to a string.

    Default formatting rules:

    - If a name starts with `"rel_"` or equals to `"power"` consider it
        a percentage value. Round percentage values to 2 significant digits,
        multiply by `100` and add `"%"`.
    - Round other values to 3 significant values.
    - If value is less than `0.001` or is greater than or equal to `10_000_000`,
        format it in exponential presentation.
    - If a name ends with `"_ci"`, consider it a confidence interval.
        Look up for attributes `"{name}_lower"` and `"{name}_upper"`,
        and format the interval as `"[{lower_bound}, {upper_bound}]"`.

    Args:
        keys: Keys to convert. If a key is not defined in the dictionary
            it's assumed to be `None`.
        formatter: Custom formatter function. It should accept a dictionary
            of metric result attributes and an attribute name, and return
            a formatted attribute value.

    Returns:
        A table with results rendered as string.
    """
    if keys is None:
        keys = self.default_keys
    widths = {key: len(key) for key in keys}

    pretty_dicts = []
    for data in self.to_dicts():
        pretty_dict = {}
        for key in keys:
            val = formatter(data, key)
            widths[key] = max(widths[key], len(val))
            pretty_dict |= {key: val}
        pretty_dicts.append(pretty_dict)

    sep = " "
    rows = [sep.join(key.rjust(widths[key]) for key in keys)]
    rows.extend(
        sep.join(pretty_dict[key].rjust(widths[key]) for key in keys)
        for pretty_dict in pretty_dicts
    )
    return "\n".join(rows)

PowerBase #

Bases: ABC, Generic[S], ReprMixin

Base class for the analysis of power.

solve_power(data, parameter='rel_effect_size') abstractmethod #

Solve for a parameter of the power of a test.

Parameters:

Name Type Description Default
data IntoFrame | Table

Sample data.

required
parameter Literal['power', 'effect_size', 'rel_effect_size', 'n_obs']

Parameter name.

'rel_effect_size'

Returns:

Type Description
S

Power analysis result.

Source code in src/tea_tasting/metrics/base.py
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
@abc.abstractmethod
def solve_power(
    self,
    data: narwhals.typing.IntoFrame | ibis.expr.types.Table,
    parameter: Literal[
        "power", "effect_size", "rel_effect_size", "n_obs"] = "rel_effect_size",
) -> S:
    """Solve for a parameter of the power of a test.

    Args:
        data: Sample data.
        parameter: Parameter name.

    Returns:
        Power analysis result.
    """

PowerBaseAggregated #

Bases: PowerBase[S], _HasAggrCols

Base class for the analysis of power using aggregated statistics.

aggr_cols: AggrCols abstractmethod property #

Columns to be aggregated for an analysis.

solve_power(data, parameter='rel_effect_size') #

Solve for a parameter of the power of a test.

Parameters:

Name Type Description Default
data IntoFrame | Table | Aggregates

Sample data.

required
parameter Literal['power', 'effect_size', 'rel_effect_size', 'n_obs']

Parameter name.

'rel_effect_size'

Returns:

Type Description
S

Power analysis result.

Source code in src/tea_tasting/metrics/base.py
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
def solve_power(
    self,
    data: (
        narwhals.typing.IntoFrame |
        ibis.expr.types.Table |
        tea_tasting.aggr.Aggregates
    ),
    parameter: Literal[
        "power", "effect_size", "rel_effect_size", "n_obs"] = "rel_effect_size",
) -> S:
    """Solve for a parameter of the power of a test.

    Args:
        data: Sample data.
        parameter: Parameter name.

    Returns:
        Power analysis result.
    """
    if not isinstance(data, tea_tasting.aggr.Aggregates):
        data = tea_tasting.aggr.read_aggregates(
            data=data,
            group_col=None,
            **self.aggr_cols._asdict(),
        )
    return self.solve_power_from_aggregates(data=data, parameter=parameter)

solve_power_from_aggregates(data, parameter='rel_effect_size') abstractmethod #

Solve for a parameter of the power of a test.

Parameters:

Name Type Description Default
data Aggregates

Sample data.

required
parameter Literal['power', 'effect_size', 'rel_effect_size', 'n_obs']

Parameter name.

'rel_effect_size'

Returns:

Type Description
S

Power analysis result.

Source code in src/tea_tasting/metrics/base.py
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
@abc.abstractmethod
def solve_power_from_aggregates(
    self,
    data: tea_tasting.aggr.Aggregates,
    parameter: Literal[
        "power", "effect_size", "rel_effect_size", "n_obs"] = "rel_effect_size",
) -> S:
    """Solve for a parameter of the power of a test.

    Args:
        data: Sample data.
        parameter: Parameter name.

    Returns:
        Power analysis result.
    """

aggregate_by_variants(data, aggr_cols, variant=None) #

Aggregate experimental data by variants.

Parameters:

Name Type Description Default
data IntoFrame | Table | dict[Any, Aggregates]

Experimental data.

required
aggr_cols AggrCols

Columns to be aggregated.

required
variant str | None

Variant column name.

None

Returns:

Type Description
dict[Any, Aggregates]

Experimental data as a dictionary of Aggregates.

Source code in src/tea_tasting/metrics/base.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
def aggregate_by_variants(
    data: (
        narwhals.typing.IntoFrame |
        ibis.expr.types.Table |
        dict[Any, tea_tasting.aggr.Aggregates]
    ),
    aggr_cols: AggrCols,
    variant: str | None = None,
) ->  dict[Any, tea_tasting.aggr.Aggregates]:
    """Aggregate experimental data by variants.

    Args:
        data: Experimental data.
        aggr_cols: Columns to be aggregated.
        variant: Variant column name.

    Returns:
        Experimental data as a dictionary of Aggregates.
    """
    if isinstance(data, dict) and all(
        isinstance(v, tea_tasting.aggr.Aggregates) for v in data.values()  # type: ignore
    ):
        return data

    if variant is None:
        raise ValueError("The variant parameter is required but was not provided.")

    return tea_tasting.aggr.read_aggregates(
        data=data,  # type: ignore
        group_col=variant,
        **aggr_cols._asdict(),
    )

read_granular(data, cols, variant=None) #

Read granular experimental data.

Parameters:

Name Type Description Default
data IntoFrame | Table | dict[Any, Table]

Experimental data.

required
cols Sequence[str]

Columns to read.

required
variant str | None

Variant column name.

None

Returns:

Type Description
dict[Any, Table]

Experimental data as a dictionary of PyArrow Tables.

Source code in src/tea_tasting/metrics/base.py
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
def read_granular(
    data: narwhals.typing.IntoFrame | ibis.expr.types.Table | dict[Any, pa.Table],
    cols: Sequence[str],
    variant: str | None = None,
) -> dict[Any, pa.Table]:
    """Read granular experimental data.

    Args:
        data: Experimental data.
        cols: Columns to read.
        variant: Variant column name.

    Returns:
        Experimental data as a dictionary of PyArrow Tables.
    """
    if isinstance(data, dict) and all(
        isinstance(v, pa.Table) for v in data.values()
    ):
        return data

    if variant is None:
        raise ValueError("The variant parameter is required but was not provided.")

    if isinstance(data, ibis.expr.types.Table):
        table = data.select(*cols, variant).to_pyarrow()
    else:
        data = nw.from_native(data)
        if not isinstance(data, nw.LazyFrame):
            data = data.lazy()
        table = data.select(*cols, variant).collect().to_arrow()

    variant_col = table[variant]
    table = table.select(cols)
    return {
        var: table.filter(pc.equal(variant_col, pa.scalar(var)))  # type: ignore
        for var in variant_col.unique().to_pylist()
    }